五次方程:群与域——数学精灵阿贝尔与伽罗瓦(7)
2023-05-21 来源:飞速影视
第二年圣诞节过后,阿贝尔向他的同学和老师们宣布他订婚了。但阿贝尔尚且不能养活自己,更无力迎娶克里斯汀。一八二八年圣诞节,他乘雪橇回去看望未婚妻,途中病情加重;虽然暂时的好转让他们一起享受了假期,但他最终没有熬过那年春天。
克里斯汀
就在阿贝尔去世后的第三天,克莱尔的一封信到达挪威。原来克莱尔一直在柏林为阿贝尔找工作,最终成功地让他获得柏林大学的教授职位。但是,这个好消息来得太晚了。此外,四位法国科学院院士也曾联袂给瑞典-挪威国王写信,希望他重视阿贝尔这位天才。除了证明高于四次的方程不存在根式解以外,阿贝尔还是椭圆函数论的奠基人之一,他为无穷级数理论奠定了严密的基础,同时求解出了第一个积分方程。
伽罗瓦理论
一八二七年春天,就在阿贝尔去世前五天,还是中学生的伽罗瓦发表了第一篇论文,那是一篇有关连分数的论文,但他并不满足于此。与阿贝尔一样,伽罗瓦起初也把目标对准五次和五次以上方程的可解性问题,他着力于寻找这类方程的一般根式解,以求一鸣惊人。可是后来,他也转移了目标。
为了研究方程的可解性问题,伽罗瓦发明了“群”的概念,进而他建立起一门新的数学分支,现在人们称这套方法为伽罗瓦理论。所谓群,是由一些元素组成的,记为G(group)。这些元素之间存在一种运算×,它满足四条性质:封闭性,a和b属于G,则a×b也属于G;结合律,a、b、c属于G,则(a×b)×c=a×(b×c);存在单位元1属于G,即对任意a属于G,满足1×a=a×1=a;对任何a属于G,存在逆元素b,a×b=b×a=1。
如同高斯所证明的,每个n次复系数方程有n个复根。依照排列组合原理,n个根有n阶乘(n!)个置换,它们在乘法意义上构成置换群Sn。例如,三次方程的三个根x1、x2、x3组成的置换群S3共有6个元素,如果用下标表示的话便是(1),(12),(13),(23),(123)和(132),其中(1)表示恒等置换,(12)表示x1和x2互换,而(123)表示x1、x2、x3轮换。
按照拉格朗日定理,对有限群来说,子群的阶数(元素个数)必整除群的阶数,两者相除所得的整数叫指数。伽罗瓦定义了正规子群,它是一种性质较好的子群。例如,(1)(123)(132)组成的子群H是正规子群,阶数最高的正规子群称为最大正规子群。对于方程的可解性判断来说,伽罗瓦理论的精妙之处在于:n次方程根式可解当且仅当它的置换群Sn的最大正规子群系列之间的指数均为素数。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号